
eRum2018

Validatetools

Edwin de Jonge, Statistics Netherlands

@edwindjonge | github.com/edwindj

eRum2018

Who am I?

I Data scientist / Methodologist at Statistics Netherlands (aka
CBS).

I Author of several R-packages, including whisker, validate,
errorlocate, docopt, tableplot, chunked, ffbase,. . .

I Co-author of Statistical Data Cleaning with applications in R
(2018) (sorry for the plug, but relevant for this talk. . .)

eRum2018

eRum2018

Data cleaning. . .
A large part of your and our job is spent in data-cleaning:

I getting your data in the right shape (e.g. tidyverse,
recipes)

I checking validity (e.g. validate, dataMaid, errorlocate)
I impute values for missing or erroneous data (e.g. VIM,

simputation, recipes)
I see data changes, improvements (e.g. daff, diffobj,

lumberjack)

Desirable data cleaning properties:

I Reproducible data checks.
I Automate repetitive data checking (e.g. monthly/quarterly).
I Monitor data improvements / changes.
I How do this systematically?

eRum2018

eRum2018

Data Cleaning philosophy

I “Explicit is better than implicit”.
I Data rules are solidified domain knowledge.
I Store these as validation rules and apply these when

necessary.

Advantages:

I Easy checking of rules: data validation.
I Data quality statistics: how often is each rule violated?
I Allows for reasoning on rules: which variables are involved in

errors? How do errors affect the resulting statistic?
I Simplifies rule changes and additions.

eRum2018

R package validate

With package validate you can formulate explicit rules that data
must conform to:

library(validate)
check_that(data.frame(age=160, job = "no", income = 3000),

age >= 0,
age < 150,
job %in% c("yes", "no"),
if (job == "yes") age >= 16,
if (income > 0) job == "yes"

)

eRum2018

Rules (2)

A lot of datacleaning packages are using validate rules to facilitate
their work.

I validate: validation checks and data quality stats on data.
I errorlocate: to find errors in variables (in stead of records)
I rspa: data correction under data constraints
I deductive: deductive correction
I dcmodify: deterministic correction and imputation.

eRum2018

Why-o-why validatetools?

I We have package validate, what is the need?

Because we’d like to. . .

I clean up rule sets (kind of meta-cleaning. . .).
I detect and resolve problems with rules:

− Detect conflicting rules.
− Remove redundant rules.
− Substitute values and simplify rules.
− Detect unintended rule interactions.

I check the rule set using formal logic (without any data!).
I solve these kind of fun problems :-)

eRum2018

Problem: infeasibility

Problem
One or more rules in conflict: all data incorrect! (and yes that
happens when rule sets are large . . .)

library(validatetools)
rules <- validator(is_adult = age >=21

, is_child = age < 18
)

is_infeasible(rules)

[1] TRUE

eRum2018

eRum2018

Conflict, and now?
rules <- validator(is_adult = age >=21

, is_child = age < 18
)

Find out which rule would remove the conflict
detect_infeasible_rules(rules)

[1] "is_adult"

And its conflicting rule(s)
is_contradicted_by(rules, "is_adult")

[1] "is_child"

I One of these rules needs to be removed
I Which one? Depends on human assessment. . .

eRum2018

Detecting and removing redundant rules
Rule r1 may imply r2, so r2 can be removed.

rules <- validator(r1 = age >= 18
, r2 = age >= 12
)

detect_redundancy(rules)

r1 r2
FALSE TRUE

remove_redundancy(rules)

Object of class 'validator' with 1 elements:
r1: age >= 18

eRum2018

Value substitution

rules <- validator(r1 = if (gender == "male") weight > 50
, r2 = gender %in% c("male", "female")
)

substitute_values(rules, gender = "male")

Object of class 'validator' with 2 elements:
r1 : weight > 50
.const_gender: gender == "male"

eRum2018

Conditional statement

A bit more complex reasoning, but still classical logic:

rules <- validator(r1 = if (income > 0) age >= 16
, r2 = age < 12
)

age > 16 is always FALSE so r1 can be simplified
simplify_conditional(rules)

Object of class 'validator' with 2 elements:
r1: income <= 0
r2: age < 12

eRum2018

All together now!

simplify_rules applies all simplification methods to the rule set

rules <- validator(r1 = job %in% c("yes", "no")
, r2 = if (job == "yes") income > 0
, r3 = if (age < 16) income == 0
)

simplify_rules(rules, job = "yes")

Object of class 'validator' with 3 elements:
r2 : income > 0
r3 : age >= 16
.const_job: job == "yes"

eRum2018

How does it work?
validatetools:

I reformulates rules into formal logic form.
I translates them into a mixed integer program for each of the

problems.

Rule types

I linear restrictions
I categorical restrictions
I if statements with linear and categorical restrictions

If statement is Modus ponens:

if P then Q
⇔ P =⇒ Q
⇔ ¬P ∨ Q

eRum2018

Example

rules <- validator(
example = if (job == "yes") income > 0

)

rexample(x) = job 6∈ "yes" ∨ income > 0

print(rules)

Object of class 'validator' with 1 elements:
example: !(job == "yes") | (income > 0)

eRum2018

Interested?

SDCR
M. van der Loo and E. de Jonge
(2018) Statistical Data Cleaning
with applications in R Wiley, Inc.

validatetools
I Available on CRAN

More theory?
← See book

Thank you for your attention! / Köszönöm a figyelmet!

https://CRAN.R-project.org/package=validatetools

eRum2018

Addendum

eRum2018

Formal logic

Rule set S
A validation rule set S is a conjunction of rules ri , which applied on
record x returns TRUE (valid) or FALSE (invalid)

S(x) = r1(x) ∧ · · · ∧ rn(x)

Note

I a record has to comply to each rule ri .
I it is thinkable that two or more ri are in conflict, making each

record invalid.

eRum2018

Formal logic (2)

Rule ri(x)

A rule a disjunction of atomic clauses:

ri(x) =
∨
j

C j
i (x)

with:

C j
i (x) =


aT x ≤ b
aT x = b
xj ∈ Fijwith Fij ⊆ Dj
xj 6∈ Fijwith Fij ⊆ Dj

eRum2018

Mixed Integer Programming

Each rule set problem can be translated into a mip problem, which
can be readily solved using a mip solver.

validatetools uses lpSolveApi.

Minimize f (x) = 0;
s.t. Rx ≤ d

with R and d the rule definitions and f (x) is the specific problem
that is solved.

